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ABSTRACT. Generalized axisymmetric flow over cones is ana- 
lyzed. T h e  ana lys i s  i s  l i m i t e d  to  t h e  case where the body 
is  within t h e  Mach cone. An asymptotic equation f o r  t h e  
meridianal cross  sec t ion  is presented for  a sharp t i p p e d  
cone. T h e  so lu t ion  of t h i s  equation is obtained numeric- 
a l l y ,  and t h e  r e su l t i ng  p l o t s  of P versus a a r e  shown graph- 
i ca l  l y .  

The l i nea r i zed  theory of supersonic  conical  flows of  an inv i sc id  gas can be /39' - 
appl ied t o  problems o the r  than those o f  gas dynamics. D. D .  Iv lev  [ l ]  showed 
t h a t  t h e  r e s u l t i n g  l i nea r i zed  theory o f  supersonic gas flows can be t r ans fe r r ed  
d i r e c t l y  t o  the  theory of pene t ra t ion  o f  sharp t ipped bodies i n t o  an i d e a l  
p l a s t i c  medium. 

The theory of l i nea r i zed  conical  flows of A. Buzeman [2] was general ized by 
M. D. Khaskind and S .  V. Falkovich [3] .  As we know, conica l  flows a r e  char- 
ac t e r i zed  by the  f a c t  t h a t  t he  v e l o c i t y  along t h e  rays e x i t i n g  from a c e r t a i n  
flow pole  are constant .  In  general ized conical flows, t hese  v e l o c i t i e s  a r e  
propor t iona l  t o  whole, p o s i t i v e  powers of t h e  d i s t ance  from the  pole ,  i . e .  from 
the  t i p  of a sharp t ipped body around which t h e  flow i s  occurring. Generalized 
conica l  flows a l s o  include flows produced by superimposit ion of v e l o c i t y  f i e l d s  
of t hese  flows. In t h i s  work, we w i l l  analyze a p a r t i c u l a r  case of axisym- 
me t r i ca l  general ized conica l  flows. For t h i s  purpose, we w i l l  use the  general  
s o l u t i o n  of t he  problem of generalized conical f l o w s  i n  the  form presented i n  
[4, 51. 

We w i l l  p resent  t h e  r e s u l t s  from [4] required for t h e  following without 
proof.  

I n  i t  ia  1 Equations 

Suppose the  main, unperturbed flow approaching the  general ized conica l  body 
with t i p  a t  zero has ve loc i ty  W a t  i n f i n i t y ,  d i r ec t ed  along t h e  z ax is  
(Figure 1 ) .  In  t h e  following, we w i l l  analyze only t h e  case when the  body i n  
the  flow i s  located completely within t h e  Mach cone with i ts  peak corresponding 
t o  t h e  t i p  of the  body. 
t he  body w i l l  be represented as  u,  v and w. 
small  i n  comparison with W.  

The ve loc i ty  pro jec t ions  i n  the  gas flow d is turbed  by 

The pro jec t ions  of the  t o t a l  flow v e l o c i t i e s  w i l l  
These pro jec t ions  are considered 

' Numbers i n  t h e  margin ind ica te  pagination i n  t h e  foreign t ex t .  
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be u ,  v, W + w. 

Figure 1 shows t h e  plane z = 1, passing through po in t  0. This plane 
conta ins  t h e  @ and OV axes, p a r a l l e l  t o  t he  0 x,O y axes. 1 1  

body and of t h e  Mach cone i n  plane E ,rl are  c i r c l e s .  

We can look upon E 
/40 and rl as dimensionless coordinates E = x/z, rl = y/z.  The c ross  sec t ions  of t he  - 

Let us introduce the  new, independent va r i ab le s  using the  formulas: 

Here A = (M2 - 1)-1’2, M i s  t h e  Mach number, u i s  t h e  angle of  t h e  rad ius  
of the  vec to r  i n  plane E ,rl with the  E axis .  
equations of ( l ) ,  we can f i n d  

By excluding u and 6 from the  

The p o t e n t i a l  of t h e  v e l o c i t i e s  
equat ion 

4 ? 

o f  the per turbed flow @ should s a t i s f y  t h e  

The so lu t ion  of t h i s  equation has  
the form 

where an = rn4 (6 , u )  and t h e  4n func- 

t ions are s a t i s f i e d  by the  equation 
n 

Figure 1 

a r b i t r a r y  harmonic func t ion  F ( 0 , 6  ) : 

In  [4], t h e  following so lu t ion  is 
presented f o r  (4), dependent on the  
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Axisymmetrical F l o w  Case 

In  the  case of axisymmetrical flow, func t ion  G n  does not  depend on u. 

Equation (4) i n  t h i s  case takes on the  form 
e 

The harmonic funct ion,  which i s  independent o f  u ,  has t h e  form F(6 )  = 
= C6 + C1. Let us prove t h a t  i t  i s  co r rec t  t o  assume C = 0. F o r  t h i s  

purpose, l e t  us s tudy t h e  behavior of t h e  s o l u t i o n  as we approach t h e  Mach cone, 
determined by t h e  equation 

1 

I t  follows from (1) t h a t  as w e  approach t h e  Mach cone, 6 + 0,  t h e  o rde r  o f  /41 - 
t h e  approach of 6 and r t o  0 being iden t i ca l .  

it is  no t  d i f f i c u l t  t o  see t h a t  as 6 + 0 

Subs t i t u t ing  F = C6 + C1 i n  (S), 

From t h i s  it follows t h a t  

But on t h e  su r face  o f  t he  Mach cone, i n  the  case when t h e  body i s  loca ted  
e n t i r e l y  wi th in  t h e  Mach cone, t h e  ve loc i ty  p o t e n t i a l  o f  t he  per turbed flow'must 
be  equal  t o  zero.  Therefore,  i t  i s  necessary t h a t  C = 0 and, f i n a l l y ,  1 

3 



Form of T i p  of Body 

Suppose R = d w  and t = R/Az. In t h e  a r e a  of t h e  t i p  0,  t he  value of 
t i s  low. I t  follows from (1) t h a t  

Fur ther ,  with low t ,  w e  can produce the  fol lowing asymptotic formulas from 
(2)  and (9) :  

From t h i s  it i s  easy t o  see  t h a t  where t -f 0 

(pl l  -- O ( 1 n f )  z i n t . c o n s t .  

Furthermore, 

from which 

Considering t h a t  W + l)an/az W,  t he  d i f f e r e n t i a l  equation f o r  t he  flow 
l i n e s  has  t h e  form 

I n  those instances w h e n  only the order  of magnitude i s  important, t h e  same 
symbol const w i l l  b e  used f o r  various constants .  
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Subs t i t u t ing  a@ / a R  from (11) i n t o  t h i s  equation, we can f i n d  n 

dR z" 
fZ 

-- -- dz - --.const. 

Since the  t i p  of  t he  body i s  a t  point Z = 0 , R  = z ,  it i s  easy t o  produce 
t h e  asymptotic equation f o r  the  meridianal c ross  sec t ion  of  t he  body from (12):  

n+I - 
R = z .const. 

Case n = 1 corresponds t o  the  wel l  known flow about a cone [2 ] .  Below, as 
an example, we w i l l  analyze i n  d e t a i l  t h e  case n = 2.  

P a r t i c u l a r  Case n = 2 

In  the  p a r t i c u l a r  case n = 2 ,  by d i f f e r e n t i a t i n g  i n  (8), we can e a s i l y  
produce 

S u b s t i t u t i n g  here  the  va lue  of 6 and coth 6 from ( S ) ,  and mult iplying $2 by 

r2, we can f i n d  

From which 

l and 
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The d i f f e r e n t i a l  equation f o r  t he  f l o w  l ines  w i l l  have t h e  form 

The body around which the  flow occurs w i l l  correspond t o  the  so lu t ion  of 
the  equation s a t i s f y i n g  t h e  i n i t i a l  condition 

If  we introduce the  new va r i ab le s :  

then equat ion (17) i s  reduced t o  an equation not  containing t h e  parameters i n  
exp 1 i c  it form : 

I f  B = f ( a )  i s  the  so lu t ion  of  equation (20), s a t i s f y i n g  the  condi t ion % = 0 = 0, t h e  equation f o r  t he  meridianal s e c t i o n  of t h e  body has the  form 

I t  is  easy t o  s e e  t h a t  t he  asymptotic solut ion of equation (20) s a t i s f y i n g  t h e  
i n i t i a l  condi t ion  i n  t h e  a rea  of t h e  t i p  of t he  body has t h e  form 
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which is i n  agreement with (13). Equation (20) was in t eg ra t ed  by t h e  Runge- 
Kutta numerical method. 
asymptotic formula (22) .  
t a b l e  below. 
t i o n  f o r  low values  of  a. 
curve over t h e  broadest  poss ib l e  i n t e r v a l  during numerical i n t eg ra t ion ,  we 
s e l e c t e d  a l a rge  s t e p  (X = 0.1) .  The r e s u l t s  are shown on Figure 3 .  The 
equat ion f o r  t h e  Mach cone (7) i n  coordinates a a n d o  becomes t h e  following: 
a 2  = P ( s t r a i g h t  do t ted  l i n e  on Figures 2 and 3 ) .  As a + =o, i .e .  as z + =o, t h e  
meridianal  c ross  s e c t i o n  o f  the  body is made p a r a l l e l  t o  t h e  gene ra t r ix  o f  t h e  
Mach cone i n  the  same meridianal  plane.  However, t h e  angle  between t h e  gener- 
a t r i x  of  t h e  Mach cone and t h e  z axis i s  a r b i t r a r y ,  whereas the  angle  of  t h e  
body s u r f a c e  with t h e  'z ax i s ,  i n  correspondence with t h e  main requirements o f  
t h e  l i n e a r i z e d  theory,  must be small. Therefore, t h e  numerical r e s u l t s  produced 
have phys ica l  meaning only f o r  t he  bow por t ion  of t he  body as long as it  can be  

can be c u t  o f f  without changing t h e  flow about t h e  bow por t ion .  
determined by t h e  l i n e a r i z e d  Bernoul l i  i n t e g r a l  [ see  (16)] 

The i n i t i a l  values o f  q u a n t i t y  P were determined from 
The r e s u l t s  of the ca l cu la t ion  are presented i n  t h e  

Figure 2 shows t h e  curve constructed from t h e  resul ts  of  calcula- 
I n  o rde r  t o  inves t iga t e  t h e  behavior of  t h e  i n t e g r a l  

2 

considered th in .  Since t h e  flow i s  supersonic,  t h e  s t e r n  po r t ion  of  t h e  body - 145 
Pressure p i s  

where P i s  t h e  gas dens i ty .  From t h i s ,  the drag o f  t h e  bow por t ion  o f  t he  body 
can be  ca l cu la t ed  us ing  t h e  formula 

where 

Figure 4 shows t h e  dependence F(a) ,  which is  constructed from t h e  da t a  
shown i n  t h e  t a b l e .  
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Figure 2 Figure 3 

Figure 4 
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